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The conjugate gradient method allows the solution of least-squares equations A(u -- u o) = B without 
evaluating A -~. Storage limitations can thus be satisfied by approximating A by a sparse matrix which 
need not be block-diagonalized. Optimization of the method allows a satisfactory solution within 10-12 
iteration steps for any sized matrix, enabling an economic use of conditional slack constraints. 

Introduction 

The least-squares refinement of  a crystal structure uses 
residuals Ah which are not linear in variables {u} and 
iteration is required for the minimization of Y h WhAt. 
Modified equations can enable a more economic 
refinement strategy. The larger the problem, the more 
uneconomic it is to use a full-matrix solution involving 
all refinable parameters. If sparse-matrix approxima- 
tions are considered, the advantage of a conjugate 
gradient solution for the least-squares equations 
A(u -- u 0) = B becomes obvious. The traditional 
method of solution involves the evaluation of A -~ so 
that u - u 0 = A- lB .  However, only in the special 
case of block-diagonalization is A -1 confined to the 
same storage area as A. The conjugate gradient 
solution says u - u0 = ~-olaiPi  where successive 
approximations ~m= 0 aiPi, m = 0 to N - 1, are made 
by an iterative procedure involving multiplication by 
the matrix A. The variance-covariance matrix for the 
variables {u} requires the evaluation of A -~ but this is 
only of any consequence in the final refinement cycle. 
A simple strategy successfully employed by Konnert 
(1976) for large structures is to use a sparse matrix 
where the only off-diagonal elements are between 
parameters for nearest and second-nearest-neighbour 
atoms. For such an approximation A -~ requires a 
much larger storage area than does A. Slack con- 

straints on interatomic distances were used to aid 
refinement by the conjugate gradient method. 

The conjugate gradient method can be monitored 
to estimate the actual improvement in Xh WhA~ for 
each iterative approximation to u -- uo. Each successive 
approximation further reduces Y h WhA~ and a simple 
modification to the standard method can be found so 
that fewer iterations can be used to obtain a satis- 
factory approximate solution. This modification is the 
subject of this paper. It is found that as few as 10 
iterations are sufficient to obtain 0-9999 of the 
maximum improvement. The rapidity of such an 
approximation means that conditional slack constraints 
can be used to aid refinement with very little cost 
in time. Restrictions can be imposed on the ranges 
of refinable parameters in three ways. 

(a) Strict constraints 

Strict constraints can be envisaged as replacing 
variables {u} by variables {v} where duj = ~i Cjidvi 
so that 

8Ah _ Ve h cj,. 
~gvi ~ ~guj 

Only a subset of the variables {v} is refined, the 
remainder being given fixed values. 
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(b) S lack  constraints 

Slack constraints can be envisaged by replacing the 
minimization of Xh WhA~ by the minimization of 
~ , h W h A ~  + EtWtA2t where A t a r e  extra residuals 
between calculated and ideal values of some quantities 
other than observable reflexion amplitudes: 

~A t ,~--, t~z[ t 

OUi -- ~j ~Ui Cji" 

(c) Conditional slack constraints 

A conditional slack constraint does not use fixed 
weights w t but increases w t until quantities A t become 
satisfactorily small. This method requires rapid trial 
solutions to the least-squares equations for efficient 
implementation and the optimized conjugate gradient 
solution outlined in this paper makes this a practical 
possibility. This is extremely helpful if certain variables 
v t have regions of unfeasibility. 

Examples of such parameters are extinction co- 
efficients, thermal parameters, and libration parameters, 
all of which should be positive definite. If the original 
value Vto is feasible then the conditional slack constraint 
would be of the form Wt(V t -- Vt0) 2. A more detailed 
discussion of the philosophies and constrained- 
refinement options used by the author in writing a 
constrained least-squares refinement program R A E L S  
are discussed elsewhere (Rae, 1978). 

Theory 

The 
properties of the following iterative procedure 

conjugate gradient method depends on the 

P0=r0 (1) 

ri+ 1 ---- ri -- ai APi (2) 

Pi+ I = ri+ l + fli Pr (3) 

For a given N × N matrix A and N × 1 vector r 0 it is 
possible to evaluate coefficients ct i and fli so that 
[ri+~,r:] = [PI+I,Apj] = 0 for j < i. The expression 
[a,b] means ~ '_~ akb k. We say the vectors rj are 
orthogonal and the vectors pj are A-conjugate. Proof is 
by iteration. 

If we have i + 1 (i > 0) orthogonal vectors rj and 
i + 1 A-conjugate v e c t o r s  p j , j  <_ i, then [ri+ l,ri] = 0 if 

ai : [ri,ri]/[ri, Api] .  (4) 
Also 

[rj ,  ri+ 1] : [rj,r/] - - c t i [ r j ,AP i ]  from (2) 

: [rj, ri] --  (ti[pj,APi] -- c~ii~j_ I [P j -  1,AP/] from (3) 

= 0 from previous iterative steps. 

Likewise, if we have i + 2 (i _> O) orthogonal vectors 

rj, j _< i + 1, and i + 1 A-conjugate vectors pj, j < i, 
then [pi+ ~,Api] : 0 if 

#i  : --[ri+ 1,APi]/[pi, Api]. (5) 
Also 

[pi+ 1,Apj] = [ri+ ~,Apj] + fli[pi,Apfi from (3) 

= [ri+ 1, (rj--  rj+ 1)]/% + fli[pt,APy] from (2) 

= 0 from previous iterative steps. 

(3) implies that [p/+l,APl+l] ----- [r/+l,APi+l ] and 
(4) and (5)imply that [ri+ 1,rt+ 1] = [ri+ i, ( r t - -a iAp~]  = 
- -ai[r i+l ,APi]  : flt[r/,rl]. We thus have alternative 
expressions for (4), (5), namely 

ai = [ri, ri]/[Pi, APt] (4a) 

fit = [rt+ 1,ri+ l]/[ri, ri]. (5a) 

Additional relations between the Pi and r i are given 
by Beckman (1960). Let us now relate the iterative 
procedure of (1) to (5) to the solution of a set of 
least-squares equations. 

It is usual for non-linear least-squares refinement 
problems to approximate the hth residual as 

N 
Z~h ~--- 3h + E ahjAUj (6) 

j = l  

where ahj = --(tgAhhgUj)o and Auj = ~j -- uj. The 
subscript o implies evaluation for some initial values 
(u j) o of the N variables u:. The symbol ^ implies a 
best least-squares value. We describe the sum of 
weighted residuals as 

~, WhA~ = ~ WhZ~ + ~, WhahtahjAuiAuj  (7) 
h h,i,j 

since 

~. W h ahi~ h : 0 (8)  
h 

for Xh WhZq~ to be the minimum value of Xh WhA~ • 
We can express (7) and (8) as 

Z WhA~ -- ~, Wh3~t= [ ( !1- -  U), A ( f i -  u)] (9) 
h h 

and 
A(fi--  u) = B, (10) 

where Aiy = Aji = Y h Whahiahj and B i = ~.h WhahiAh. 
The usual procedure is to set up equations 

A v = B  o (11) 

for some initial values u o and solve for v in order to 
minimize 

H(x) = [ ( v -  x), A ( v -  x)] (12) 

where v = fi - u o, x = u - u o and Boi = ~.h WhahiAoh • 
H(x) has a minimum value of zero since A has no 
negative eigenvalues. 
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The solution space is spanned by N base vectors and 
Pi so that 

N--1 

~1-- U o = ~ YiPi '  (13) 
i=0 

allowing successive approximations xi+ l to v where 

x i + l = x i + y i P i  and Xo=0. (14) 

We talk of residuals bi÷ ~ = A(v - xi+ ~) where b o = 
Av = B o so that 

bi+ 1 = b i - -  ~)iAPi . (15) 

If the Pi are chosen to be A-conjugate then from (15) 

[pi, b i] = [pi,bj];j < i so that from (13) 

~i = [Pi ,bo]/[Pi ,APi  ] = [Pi ,bi] /[Pi ,APi  ]" 

If the Pi are generated from (1) to (5) and r o = b o, 
then bi = ri, [Pi, bi] = [r/,ri] and )'i = % for all i. 

Any iteration implicit in (14) for A-conjugate vectors 
Pi gives the result that 

H ( x i +  1 ) -  H(x i )  = Y~[Pi, APi] --  2~i[Pi, bi] 

has a minimum value of-),2[pi,Api] if Yi = [pi, bi ]/ 
[pi, Api]. Thus we see that generating the Pi from (1) 
to (5) and r o = b o allows the evaluation of successive 
approximations to v which minimize H(x) for the 
degree of freedom allowed by (14). We can monitor 
the improvement of successive approximations with 

t 
H(xt+l)--  H(xo) = - -  Y c~}[pj,Apj]. (16) 

j=0 
where 

The conjugate gradient method evaluates success- 
ive approximations x~+~ = Y J=otpijrj where ~Pij = and 
y tk= j ak[rk, rk]/[rj,r j] and we see that the finite number 
of iterations depends on knowledge of the preceding 
residuals. 

Analys i s  o f  the conjugate  gradient method  

An analysis of the conjugate gradient method is useful 
in that it shows how an intelligent use of the method 
can alleviate difficulties in certain non-linear least- 
squares refinement problems. Properties of the me thod  
are more readily understood if we express (1) to (5) 
using the unitary matrix U where UU = UU = 1 
and UAO = A is the diagonal matrix of eigenvalues 
of A. We see that the equations Av = B o are solved 
with the iteration 

Upo = Uro = UBo (1 b) 

Uri+ 1 = Uri - t~i AUpi (2b) 

Up/+  1 = Urt+ 1 + ~i U p / ,  (3b) 
where 

ct i = [ U r i , U r i ] / [ U P i , A U P i  ] (4b) 

/~i = [Ur i+  1,Uri+ 1]/[Uri ,Uri] ,  (5b) 

but these are exactly the same iterative steps that 
would be used if the conjugate gradient method were 
used to solve the transformed equations A(Uv) = 
(UBo). It is seen from (2b) that the ratios between 
components of Urj corresponding to any particular 
degenerate eigenvalue do not depend on j. Also the 
component of Urj corresponding to a zero eigenvalue 
should be zero for all j.  Thus the number of iterative 
steps needed is equal to the number of numerically 
different non-zero eigenvalues of A. This of course 
assumes an absence of round-off errors. 

However, non-unitary transformations of the 
equations Av = B o do indeed lead to different 
iterative steps. In particular let us consider the 
transformation of the equations 

(C  -1,2 AC-1 '2 ) (C l /2  v) = (C-1/2 Bo) (17)  

where C~/= 0 if i ~ j ,  C1/2C 1/2 = C, and C-1/2C -1/2 = 
C -1. 

(1) to (5) may be applied to solve (17) by finding 
approximations C~/2 Xi+ 1 = Cl /2x i  + Cti C1/2 Pi to C 1/2 v 
where initially C~/2Xo = 0 and C1/2po = C~/2ro = 
C-1/2Bo . These equations may be expressed as an 
approximation xi+~ = x i + ~iPi to v where initially 
x o = 0, and (1) to (5) are now 

Po = ro = C-1 Bo (18)  

ri+ l = ri - -  (li C-I  A P i  (19) 

Pi+ 1 : ri+ 1 + ]~i Pt, (20)  

t'I i -~- [ r i , C r i ] / [ P i , A P i  ] (21)  

~i  = [ri+ l,Cri+ l ] / [ r i , C r i ] .  (22)  

Let us define p[ = Cl/2pi  and A' = C - I / 2 A C  -1/2 and 
then also define p[' = U'p~ and A" = U ' A ' 0 '  where 
A" is the diagonal matrix whose diagonal elements are 
the eigenvalues of A'. (18) to (22) are then expressed 
as 

P'o' = r o''= U'C-I /2  Bo (18a) 

" " " - "  (19a) ri+l = ri - -  c t iA  Pi 
?? ?? 

Pi+l = ri÷l + fliP~' (20a) 
where 

ai = [rI',r~']/[pI',A"pI'] (2 la) 
and 

]~ i  [ _ .  _ .  . tr . = tr/+ 1,r i+,] /[r i  ,r i ] (22a) 

Since [p~',A"p~'] = [p~,A'p~] = [p,,Ap,], (16) still 
describes the improvement in the successive approxi- 
mations obtained from (18) to (22). However, we see 
that we have two modifications available to us in trying 
to optimize the conjugate gradient method. 

Firstly we can modify the size of any variable, and 
making Cii = A ii implies A~t = 1 for all i, so that, if 
A were a diagonal matrix, the use of (18) to (22) 
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rather than (1) to (5) would give an exact solution in a 
single iterative step. It is seen that it is not necessary to 
transform A nor to evaluate C uE and C -~/2. The 
initial approximation to v would now be crop o :- 
a o C - l B o  where ao = [Bo, C-~Bo]/[Bo,C-1AC-1Bo] is 
the optimum fractional shift associated with making 
C an approximation to A and solving Cv = % B  o. 
For any iterative step it is better to use the conjugate 
gradient approximation xt+ L = x i +ct ip  i than to ignore 
previous iterations and say x/+~ = x t + ct~rt since the 
optimum value of tt~ gives a reduction in H(x) which 
is smaller by a factor of [pi, Api]/[ri,Ari] = 1/(1 + 
]12_~ [pl_ L, Apt_ ~ ]/[ p/, Ap/]). 

Secondly we can modify the choice of variable by 
taking different linear combinations of variables. 
Simple, judicious choice of variables can make A more 
closely approximate C and so reduce the number of 
iterations needed to obtain any particular reduction in 
H(x). The use of symmetrized parameters defined 
relative to orthonormal axial systems (Rae, 1975) goes 
a long way to satisfying this condition. 

Discussion 

The success of the optimized procedures (18) to (22) 
depends on a scaling of variables so that A~t = 1.0 for 
all i. The value of 2max/2mi n is thus smaller for the 
matrix A' than for the matrix A. 2m~ x and 2mi . are 
the maximum and minimum eigenvalues of the relevant 
matrix and, for A', 2ma x > 1.0 > 2mi ". Some idea of 
,~max/A, min can be obtained without actually evaluating 
the eigenvalues, a i may be expressed as t t  i = [r~',p~']/ 
[r~',A"p['] so that '~'max > it} -1 > /'l'min" The quantity 
( '~) i  : [p[',A"p~']/[p[',p['] = [Pi, APi]/[Pi, CPi], where 
'~'max > ( ~ ) i  ~ 2min, gives an indication of the relative 
importance of the different eigenfunctions of A' in 
evaluating the ith iteration. Usually (2) / i s  greater than 
1.0 for the first few iterations and tends to become 
smaller at each iteration. This is not always so but 
can reasonably be expected to be so in most cases since 
the magnitude of the nth element of r" should on 
average vary as the square root of the nth diagonal 
element of A". 

The ratio t- 1 
tP f t  f f  f f  

R = [r t ,r  i ] / [ r  o ,r o ] : l 'I ~j  
j=0 

may also be used to monitor the iterations. The 
quantity flj is much more likely to be less than 1.0 
for the optimized equations (18) to (22) than for (1) 
to (5). The ratio R approximates the fraction of 
reduction in H(x) still to be obtained. The actual 
reduction in H(x) is given by (16). With the optimized 
procedure a ratio of R = 10 -4 can usually be met 
within 12 iterations irrespective of matrix size. 

The smaller the eigenvalue and the larger the 
number of iterations, the worse are the effects of 

round-off error. This can be demonstrated by inten- 
tionally including redundant variables in an uncon- 
strained full-matrix least-squares calculation. A' then 
has a zero eigenvalue and theoretically there should 
be no change in the combination of parameters 
corresponding to the eigenfunction of zero eigenvalue, 
e.g. a combination of parameters that describe a 
translation of a molecule in the polar direction of a 
polar space group. Terminating refinement at a ratio 
of R -- 10 -4 does not prevent an unsatisfactory solution 
being obtained on most computers. Monitoring (2)i  is 
of little use since only one eigenvalue is zero in this 
case. For a pseudocentrosymmetric structure nearly 
half the eigenvalues of A' are small if standard 
parameters are used and in this instance stopping 
iteration if (2)i  goes below 0.3 say is a justifiable 
slack constraint procedure. 

The optimized procedure goes a long way towards 
reducing round-off errors since fewer iterations are 
required, and, provided no eigenvalues are zero, a 
satisfactory solution should be expected. However, the 
use of slack constraints on bond lengths can produce 
matrices which are almost singular. A slack constraint 
approximates a strict constraint should a sufficiently 
large weight be used, and a major advantage in 
reducing the number of variables is that fewer well- 
defined observations can be used. However if over- 
large weights are used on bond-length constraints, the 
eigenvalue matrix A" will contain very small eigen- 
values corresponding to the degrees of freedom 
remaining for atom displacement, e.g. torsion angle 
changes. Round-off errors can then give unsatisfactory 
changes for the very parameters that should be 
determined. The problem is even worse if an un- 
optimized solution is used. 

A simple ~lack constraint that improves convergence 
and accuracy is to change A to A + kC where k is 
a constant k times the unit matrix and C is as defined 
previously. Then A' becomes C - I / 2 ( A  + k C ) C  - 1 / 2  - -  

A' + k and A" becomes A" + k. A change in the 
parameter combination corresponding to the nth 
eigenvalue 2,, of A" is then damped by a factor 
2,/(2,  + k). However, if the matrix has been made 
almost singular by the inclusion of slack constraints on 
bond lengths, this procedure damps those very changes 
that one wishes to refine and which could have been 
well-determined had an alternative parameterization of 
the problem been used. It is better to compromise and 
limit the accuracy to which slack constraints should 
hold by using smaller weights. 

A weighting scheme which will hold for any 
parameterization is to relate the weight to the diagonal 
element of the unconstrained least-squares matrix. The 
system used in the program R A E L S  is to have the 
program select a weight 09, for the slack constraint 
residual /I t so that ~ i  wt(O/I/tgUi)2/Aii equals a user- 
supplied value. This effectively puts parameters u~ on a 



582 CONJUGATE GRADIENT SOLUTION FOR LEAST-SQUARES EQUATIONS 

common scale and a value of 10.0 for bond lengths 
and 2.0 for angles produces a well-behaved refinement 
with acceptable residual values for the constrained 
bond lengths and angles. Since the slack constraints 
should not be expected to hold exactly, smaller weights 
are used once the refinement produces constrained 
values that are within reasonable limits of expected 
values. 
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A general method is described for calculating the Fourier transform of a product of two Slater-type 
atomic orbitals located on different atomic centres. The method is approximate, but can be carried to any 
desired degree of accuracy. 

Introduction 

Let X,(x -- a) be an atomic orbital of type g centred 
on an atom at the point a, while X,(x - b) is an atomic 
orbital of type v centred on an atom at the point b. 
The Fourier transform of the product of two such 
functions: 

X~,,(S,R) = f dax exp(iS. X)Xu(x -- a)x,,(x -- b) 

is called a generalized seattering factor. Here S is the 
scattering vector, and R -- a -- b is the interatomie 
distance. Scattering factors of this type are important 
in comparing the results of X-ray charge-density 
measurements with calculated charge densities, and 
also have applications in the evaluation of molecular 
Coulomb and exchange integrals (Harris & Miehels, 
1967; Avery, 1975). They have been studied exten- 
sively by Stewart (1969b), Monkhorst & Harris 
(1972), Graovae, Monkhorst & Zivkovie (1973), 
Avery & Watson (1977) and others. The one-centre 
ease is easy to evaluate in simple closed form, both 
with Slater-type basis functions and with Cartesian 
Gaussian basis functions. The two-centre case is also 
easy to evaluate with Cartesian Gaussian basis 
functions. However, the two-centre case with Slater- 
type basis functions is extremely difficult, and, in this 
ease, it has not yet been possible to evaluate the 
generalized scattering factors in simple closed form. 

Therefore it is desirable to obtain approximate 
expressions which will cover this case. 

Approximate expressions 

Let us define the Fourier transform of a function 
f(x) as: 

1 
fd3x exp(iS. X)f(x). (2) 
d 

Then 

exp(iS, a)fd3 x [ f ( x -  a)] t -  ~ d exp[ iS . (x -  a ) ] f ( x -  a) 

= exp(iS, a)ft(S). (3) 

From (1) we have: 

X~,~ = ~ [ f (x  - a)g(x - b)] t (4) 

where 

f(x) = x~(x) 
g(x) = z~(x). (5) 

Let us split the funetionfinto 'hard' and 'soft' parts: 

f = f h  + fs, (6) 


